Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Cheng Guo,* Xi-Feng Gu, Lian-Di Zhang and Yan Li

Department of Applied Chemistry, College of Science, Nanjing University of Technolgy, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China

Correspondence e-mail: guocheng@njut.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (Wae) = 0.009 Å R factor = 0.084 wR factor = 0.289 Data-to-parameter ratio = 14.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Ethyl 2-amino-4-(3-fluorophenyl)-4*H*-benzo[*h*]chromene-3-carboxylate

The title compound, $C_{22}H_{18}FNO_3$, was synthesized by the reaction of 1-naphthol with ethyl cyanocaetate and 3-fluorobenzaldehyde in ethanol under microwave irradiation. In the crystal structure, there are intramolecular N-H···O hydrogen bonds and intermolecular N-H···O and N-H···F hydrogen bonds. An intramolecular C-H··· π interaction is also present.

Comment

Benzopyrans and their derivatives occupy an important place in the realm of natural and synthetic organic chemistry because of their biological and pharmacological properties (Morianka & Takahashi, 1977), such as antisterility (Brooks, 1998) and anticancer agents (Hyana & Saimoto, 1987). In addition, polyfunctionalized benzopyrans constitute the structural unit of a number of natural products and, because of the inherent reactivity of the inbuilt pyran ring, these are versatile synthons (Hatakeyama *et al.*, 1988).

We report here the crystal structure of the title compound, (I). The molecular structure of (I) is shown in Fig. 1, where the dashed line indicates the intramolecular $N-H\cdots O$ hydrogen bond (Table 2). The bond lengths and angles are unremarkable. In the crystal structure, molecules are linked by N- $H\cdots O$ and $N-H\cdots F$ intermolecular hydrogen bonds (Table 2 and Fig. 2). There is also an intramolecular contact which indicates a weak $C-H\cdots \pi$ interaction (Fig. 3 and Table 2), *viz*. C12-H12 $A\cdots Cg1$, where Cg1 is the centroid of the ring O3/C5/C4/C6/C13/C22. The combination of both types of rather weak interactions generates a three-dimensional network.

Experimental

Compound (I) was prepared by the reaction of 1-naphthol (5 mmol) with ethyl cyanocaetate (5 mmol) and 3-fluorobenzaldehyde (5 mmol) in ethanol (2 ml) under microwave irradiation, using

Received 31 May 2005 Accepted 9 June 2005 Online 17 June 2005

 ${\rm (\!C\!\!\!\!C\!\!\!}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

A view of the molecular structure of (I). The dashed line indicates the intramolecular $N{-}H{\cdots}O$ hydrogen bond.

Figure 2

Part of the crystal structure of (I). Dashed lines indicate intermolecular $N-H\cdots O$ and $N-H\cdots F$ hydrogen bonds.

piperidine as a catalyst. Pure compound (I) was obtained by recrystallization from ethanol (m.p. 406–409 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. ¹H NMR (CDCl₃): δ 8.21 (*d*, 1H), 7.76 (*d*, 1H), 7.47–7.57 (*m*, 3H), 7.12–7.17 (*m*, 2H), 6.95–7.06 (*m*, 2H), 6.77–6.81 (*m*, 1H), 6.49 (*s*, 2H), 5.06 (*s*, 1H), 4.11 (*q*, 2H), 1.21 (*t*, 3H).

Crystal data

C22H18FNO3	$D_x = 1.343 \text{ Mg m}^{-3}$
$M_r = 363.37$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 25
a = 9.069 (2) Å	reflections
b = 6.136(1) Å	$\theta = 10 - 13^{\circ}$
c = 32.537 (7) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 96.87 \ (3)^{\circ}$	T = 293 (2) K
V = 1797.6 (6) Å ³	Block, colourless
Z = 4	$0.4 \times 0.3 \times 0.2 \text{ mm}$
Data collection	
Enraf–Nonius CAD-4	$\theta_{\rm max} = 26.0^{\circ}$
diffractometer	$h = 0 \rightarrow 10$
$\omega/2\theta$ scans	$k = 0 \rightarrow 7$
Absorption correction: none	$l = -38 \rightarrow 38$
3741 measured reflections	3 standard reflections

 $t = -36 \rightarrow 36$ 3 standard reflections every 200 reflections intensity decay: none

The C-H··· π interaction in (I), shown as a dashed line.

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.084$
$wR(F^2) = 0.289$
S = 1.00
3509 reflections
245 parameters
H-atom parameters constrained

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.08P)^{2} + 6.8P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.33 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.34 \text{ e } \text{\AA}^{-3}$ Extinction correction: *SHELXL97* Extinction coefficient: 0.0072 (17)

Table 1

Selected geometric parameters (Å, °).

F-C9	1.364 (7)	O3-C5	1.389 (6)
O1-C3	1.230 (7)	N-C5	1.322 (7)
O2-C3	1.343 (7)	C1-C2	1.490 (10)
O2-C2	1.444 (7)	C3-C4	1.447 (7)
O3-C22	1.385 (7)	C6-C7	1.533 (7)
C^{2} O^{2} C^{2}	117.0 (5)	N C5 C4	120.7 (5)
C3=02=C2	117.0 (3)	N=C3=C4	129.7 (3)
$C_{22} = 0_3 = C_5$	118.1 (4)	N - C5 - O3	108.0(5)
O2 - C2 - C1	107.0 (6)	C4-C5-O3	122.3 (5)
O1-C3-O2	121.7 (5)	C8-C7-C6	120.6 (5)
O1-C3-C4	126.4 (6)	C12-C7-C6	120.5 (5)
O2-C3-C4	111.9 (5)	C13-C22-O3	122.8 (5)
C5-C4-C3	118.5 (5)	O3-C22-C21	113.4 (5)
C3-C4-C6	118.9 (5)		

Table 2	
Hydrogen-bond geometry (Å, °)	

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N-H0A···O1	0.86	2.15	2.732 (7)	125
$N-H0A\cdotsO1^{i}$	0.86	2.36	3.023 (7)	134
$N - H0B \cdot \cdot \cdot F^{ii}$	0.86	2.46	3.166 (7)	140
$C12-H12A\cdots Cg1$	0.93	2.72	3.069	103

Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) x - 1, y + 1, z. Note: *Cg*1 is the centroid of the ring O3/C5/C4/C6/C13/C22.

All H atoms were positioned geometrically, with C–H = 0.93– 0.98 Å and N–H = 0.86 Å; they were included in the refinement in the riding-model approximation, with $U_{\rm iso}({\rm H}) = x U_{\rm eq}$ (carrier atom), where x = 1.5 for methyl H atoms and 1.2 for all other H atoms.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97*

3509 independent reflections

 $R_{\rm int} = 0.120$

1679 reflections with $I > 2\sigma(I)$

(Sheldrick, 1997); molecular graphics: *SHELXTL* (Siemens, 1996); software used to prepare material for publication: *SHELXL97*.

References

Brooks, G. T. (1998). Pestic. Sci. 22, 41-50.

Enraf-Nonius (1989). *CAD-4 Software*. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Hatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1988). J. Chem. Soc. Chem. Commun. pp. 1202–1204.

Hyana, T. & Saimoto, H. (1987). Jpn Patent No. JP62l812768.

Morianka, Y. & Takahashi, K. (1977). Jpn Patent No. JP52109000.

- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.